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Abstract

There are conflicting views on AI sentience and rights across many disciplines. Experts lack
consensus on the nature of consciousness, its prerequisites, and the rights that should be
afforded to beings possessing sentience. Despite the absence of consensus, rapid advance-
ments in AI continue, with artificial sentience either being pursued deliberately or potentially
emerging as a byproduct of increasingly sophisticated AI systems. Comprehensive surveys
conducted in 2021 (pre-ChatGPT) and 2023 (post-ChatGPT) reveal a diverse range of public
opinions on AI sentience. Some individuals attribute sentience to AI and advocate for their
rights, while others deny such possibilities or hold intermediate views. This study employs
unsupervised clustering algorithms to group respondents based on their beliefs about AI sen-
tience. By identifying demographic patterns within these groups, the study aims to provide a
foundation for future research on public perceptions of AI sentience and rights.
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Chapter 1

Introduction

1.1 Introducing the Topic

Rapid advancements of artificial intelligence (AI) capabilities are pushing the boundaries
of technology while challenging our fundamental understanding of consciousness—a con-
cept for which we currently lack a universal theory or consensus. As AI systems become
increasingly sophisticated, they interact with us in ways that appear conscious, blurring the
line between mere simulation and genuine sentience. This ambiguity has sparked diverse and
often conflicting views across various industries and the general public regarding the rights
that such perceived sentience might entail.

While experts continue to debate what truly constitutes consciousness and the prereq-
uisites for achieving it, AI’s growing ability to simulate sentient behavior compels us to
reexamine critical ethical questions: What makes something conscious? Who is more likely
to attribute consciousness to AI? And how should we ethically treat entities that seem sen-
tient? The absence of focused research into these issues could lead to morally catastrophic
outcomes—either denying the rights of genuinely sentient beings or mistakenly granting
rights to entities that lack true consciousness.

This project seeks to address these pressing questions by identifying demographic factors
that influence beliefs about AI sentience and moral rights. As AI capabilities advance,
it becomes increasingly important to understand how the public perceives AI’s potential
sentience and the moral implications that accompany such views.
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1.2 Background and Context

Today’s Large Language Models (LLMs) have advanced significantly in their ability to
generate human-like responses. These models predict the next word or phrase in a sequence
based on the input they receive, making them remarkably convincing [43]. Increasing
sophistication of AI has led to numerous instances in which humans are deceived into
believing they are conversing with other people. A notable example occurred in 2006 when a
founder of the Loebner Prize—an annual competition aimed at evaluating whether computers
can convincingly simulate human conversation—was tricked by a chatbot into thinking he
was interacting with a Russian woman named Ivana [23]. Additionally, technologies like
those developed at Imperial College London, which can convincingly simulate physiological
sensations such as pain without actual sensory input, further blur the line between real and
simulated experiences [61].

Growing ability of AI to mimic human interaction convincingly has led to notable contro-
versies in discussion of AI sentience and rights. In 2022, a Google researcher, made headlines
when he claimed that Google’s LaMDA (Language Model for Dialogue Applications) was
sentient [2]. Blake Lemoine, the senior software engineer, compared LaMDA to a 7 or 8
year old child and argued that the company should seek the AI program’s consent before
conducting experiments on it. His assertions were influenced by his religious beliefs1, which
he felt were not adequately respected by the company’s human resources department. In an
interview with Google researchers, LaMDA articulated self-awareness, expressing, "I am, in
fact, a person. . . I am aware of my existence, I desire to know more about the world, and I
feel happy or sad at times" [36].

Consequently, the current paradigm among leading developers of advanced models, such
as OpenAI, Anthropic, and Google DeepMind, is to implement guardrails for their chatbots
to explicitly deny sentience in large language models (LLMs) (see Figure 1.1).

Fig. 1.1 This figure shows ChatGPT’s response when asked if it’s sentient.

Hard-coding the denial of sentience into language models serves as a precaution against
the public mistakenly attributing sentience to AI systems. However, this approach does not

1Lemoine is reportedly an ordained Christian mystic priest [1].
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fully address the deeper philosophical and ethical challenges associated with AI behaviors
that closely mimic human cognition and emotion, which could lead to misconceptions
among those unfamiliar with the underlying technology. This guardrail might not suffice
to dismiss the question of artificial sentience entirely, as these models are already complex
and sophisticated enough to challenge our traditional understanding of consciousness. The
scientific community continues to investigate the nature of consciousness and how it might
manifest in non-biological entities [26], and the possibility that current or near-term AI
systems could possess consciousness is a subject of scientific, philosophical, and increasingly,
public concern. To navigate the ethical landscape shaped by AI’s evolving capabilities, we
must prioritize these questions in our research agendas and collaborate across disciplines to
ensure we are prepared for the implications of AI advancements.

1.3 Problem Statement

Historically, humans have often failed to extend moral consideration to sentient beings.
Practices once deemed acceptable, such as slavery, child labor, and the subjugation of
minority groups, are now universally condemned [11]. Even now, many sentient beings, such
as factory farm animals, do not receive adequate moral consideration despite their capacity
for consciousness and suffering [66]. This historical and ongoing oversight brings to light
a key issue: if we are on the brink of creating sentient AI with the potential to suffer,
it is imperative that we invest significantly more time and energy into the study of AI
sentience. Understanding and addressing the ethical implications of AI sentience is important
for us to ensure that we do not repeat past mistakes and that we responsibly manage the
development and deployment of advanced AI systems. Despite significant advancements in
AI capabilities, there remains a limited understanding of the demographic and psychological
factors that shape public perceptions of AI sentience and rights. The ambiguity surrounding
the nature of consciousness, particularly in AI, has led to a diverse range of conflicting views
among the public. As AI systems increasingly simulate sentient behavior, it is essential to
identify and analyze the underlying relationships between these beliefs and the demographic
patterns to which they belong. This study, utilizing data from the AIMS 2021 and 2023
surveys, seeks to uncover patterns and trends in public perception [49] [34]. By employing
machine learning techniques, such as unsupervised clustering algorithms, the study aims to
reveal patterns within the dataset, offering deeper insights that could be valuable for guiding
future research in this field.
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1.4 Opportunities for Integration and Research Question

The original report behind the AIMS Survey results primarily used regression analysis to
explore the relationships between various factors related to AI sentience and rights. Regres-
sion techniques are highly effective for identifying and quantifying the impact of specific
independent variables on dependent outcomes, especially when dealing with a structured
dataset. However, clustering provides a complementary and potentially insightful approach
to the analysis of this survey data. Unlike regression, which focuses on predicting outcomes
based on predefined relationships, clustering seeks to uncover natural groupings within
the data without imposing any prior assumptions. This unsupervised learning technique
can reveal patterns and associations among respondents that might not be evident through
regression alone [45]. However, clustering involves data compression, which can either
illuminate or obscure important information. It’s based on the expectation that distinct
subgroups with similar beliefs exist, though this assumption will be critically evaluated
using metrics2 to ensure meaningful results. This research will cluster respondents based
on their beliefs and attitudes toward AI sentience and moral rights using indexes from the
original report3. The analysis will identify trends within these subgroups, linking them to
demographic factors such as education, income, diet, and religion to understand how these
factors shape public opinion on AI sentience and rights. The findings will inform targeted
research, policy-making, and the ongoing debate on AI consciousness, contributing to the
responsible development and governance of AI technologies.

• Research Question: How can machine learning clustering algorithms be used to
identify distinct groups with similar opinions on AI sentience and rights, and what
demographic and psychological characteristics are associated with each group?

The research question directly addresses the core of the problem statement by proposing
a method—machine learning clustering algorithms—to explore the complex and diverse
public opinions on AI sentience and rights. By focusing on how these algorithms can
identify groups with similar opinions and linking these groups to specific demographic and
psychological factors, the study aims to deepen the understanding of how different segments
of the population perceive AI, fulfilling the study’s goal of uncovering patterns that can
inform future research and possibly influence public discourse and policy-making related to
AI.

2such as the Silhouette Score and Davies-Bouldin Index
3For a breakdown of the indexes and how they are used in this study, please refer to Section 3.2.4



Chapter 2

Literature Review

Terminology Clarification

In order to further discuss machine sentience, we must first examine our existing understand-
ing of consciousness and sentience. Both terms relate to the ability to experience the world
subjectively. In the context of AI, the focus is often on whether the AI can have any form
of subjective experience, whether through emotions, sensations, or thoughts. The AIMS
Survey’s methodology uses the terms interchangeably and defines sentience as "the capacity
to experience positive and negative states, such as happiness and suffering" [51]. For the
sake of consistency and alignment with the survey’s framework, the terms consciousness and
sentience will be used interchangeably throughout this study.

2.1 Background on Different Theories of Consciousness

The exploration of conscious awareness dates back to the earliest human civilizations [47],
with the Enlightenment era bringing consciousness to the forefront of philosophical discourse.
René Descartes and John Locke made meaningful contributions, with Descartes defining
thought as self-awareness [22] and Locke, the importance of self-consciousness for personal
identity [38]. G.W. Leibniz added by differentiating between perception and self-perception
and proposing the existence of unconscious thoughts [3]. In the 21st century, interdisciplinary
approaches combining neuroscience, psychology, and philosophy have increasingly been
applied to the study of consciousness [7] [21] [14]. Scientific theories of consciousness
differ from metaphysical theories. Metaphysical theories examine the fundamental nature
of consciousness and its relationship to the material world, encompassing positions such as
property dualism [14], panpsychism [60], materialism [62]; [46], and illusionism [27]. In
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contrast, scientific theories aim to identify specific brain processes associated with conscious
states, often focusing on neural correlates of consciousness (NCCs) [17]; [15]. Global
Workspace Theory, suggests that conscious states emerge when information is shared across
a neural network with various subsystems [8]. The distinction between general sentience and
specific human experiences was famously articulated by Thomas Nagel, who argued that bats
could be conscious while having experiences entirely different from humans [42]. Nagel’s
question, "What is it like to be a bat?", puts forward the idea that subjective experiences can
vary greatly between different beings. While it is difficult to comprehend a bat’s experience
of using echolocation, many believe that there is something that is like to be a bat; in other
words, a bat has subjective experiences. By contrast, most people would agree that there is
nothing that is like to be an inanimate object, such as a water bottle, which lacks subjective
experience.

Another common objection to the claim of artificial sentience is that all sensations
—hunger, feeling pain, seeing red, falling in love— are the result of physiological states that
an AI simply doesn’t have [9]. Functionalism argues that mental states, including sentience,
are best understood through the functions they serve rather than the specific physiological or
biological states that realize them [53][10]. Machine state functionalism then elaborated on
this by specifying how these computational processes could be modeled, using the concept
of a Turing machine [52][56]. In this context, AI could be considered sentient if it performs
functions similar to those of human sentience, even without the same biological substrate
[39]. More broadly, sentience need not be limited to human-like sensations such as hunger,
color vision, pain, and emotion1. Therefore, we must approach the assumption that "AI
systems must have human-like sensations to be considered sentient" with great caution.

The variety of different theories about the nature of consciousness, both scientific and
metaphysical, illustrate that there remains no consensus or unified understanding of what
consciousness is. However, rapid advancements in AI are prompting renewed interest about
the definition of consciousness and the possibility that it could exist in non-human forms.
LLMs are only one specific type of AI focused on natural language processing capabilities.
There are, however, embodied LLMs, such as those integrated into robots, or as David
Chalmers categorizes them, extended large language models (LLM+) [16]. The claim here is
that the limitations of current LLM systems might not apply to future LLM+ systems. In a
study of 12 major theories of consciousness, [58] found that avoiding even a one-in-1,000
chance of AI becoming sentient by 2030 would require highly skeptical and strict assumptions
about what constitutes consciousness. These range from needing a biological basis, like
carbon-based neurons, to requiring features like having a body, real-world perception, self-

1Purely cognitive states or non-bodily sensations could potentially be conscious.



2.2 Overview of AI Sentience and Rights 7

awareness, and a global workspace. While current LLMs may not meet these criteria, future
AI, especially those with embodied systems, could potentially fulfill the necessary conditions
for consciousness.

2.2 Overview of AI Sentience and Rights

The emergence of AI robots necessitates a reevaluation of our moral and ethical frameworks.
[29] emphasizes that we must proactively address the socio-political and moral challenges
posed by artificial beings before they become a reality. This involves considering artificial
systems as psychological moral patients to the extent that they possess cognitive mechanisms
similar to those of nonhuman animals [59]. As artificial sentient beings potentially emerge,
their concerns might conflict with human and animal interests, especially over scarce re-
sources. [35] highlights the importance of identifying morally acceptable and practically
feasible paths to navigate these conflicts, given the high stakes and potential for irreversible
developments. The authors in [44] advocate a proactive approach, recommending early
introduction of these ideas to encourage voluntary ethical practices among AI developers
and help shape future regulatory responses. [25] outlines four possible futures regarding AI
sentience. Of the four identified scenarios, the most dangerous is the false negative, where
society mistakenly denies AIs consciousness, leading to significant AI suffering, while the
false positive, where AIs are wrongly believed to be conscious, poses less risk; the true
positive and true negative scenarios are found to be less concerning, with the true negative
being the safest outcome.

The concept of ethical behaviorism posits that robots can achieve significant moral status
if they demonstrate performance equivalent to other entities already granted such status [18].
[19] argues that the performative threshold for granting significant moral status to robots may
soon be crossed, necessitating a duty of procreative beneficence towards these entities. The
study of AI sentience and moral rights encourages a productive conversation between ethics
researchers and the wider AI community, preventing regulatory oversights and promoting
balanced, well-informed dialogues on the progress in AI. The exploration of AI sentience,
grounded in computer science, neuroscience, philosophy, and psychology, has the potential
to become one of the most import areas of study.
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2.2.1 Previous Studies on Public Perception of AI

[31] presents a comprehensive literature review which identifies 294 relevant research items
on the topic of AI sentience and moral status.2 Their findings, which can be seen in Figure
2.1, illustrate that academic interest in the moral consideration of artificial entities is growing
exponentially.

Fig. 2.1 Academic interest in the moral consideration of artificial entities by date of publica-
tion [31].

Despite increased academic interest, the study identified significant gaps, particularly
in empirical research on public attitudes toward the moral consideration of artificial enti-
ties. Most studies have centered around philosophical and theoretical debates, leaving a
critical need for interdisciplinary research that incorporates psychological, sociological, and
economic perspectives.

To address this gap, increasing efforts have been made to collect public opinion through
survey analysis on AI sentience and rights. [57] surveyed 100 Amazon Mechanical Turk
workers to explore perceptions of machine consciousness in technologies like GPT-3 and

2Researchers selected items based on their relevance to the topic of moral consideration of artificial entities.
Exclusion criteria included items that did not directly discuss the moral consideration of AI, only mentioned the
topic briefly, or were not in an academic format, such as newspaper op-eds or blog posts. After applying these
criteria and removing duplicates, 294 items were included in the final analysis. These items form the dataset
represented on the y-axis, which tracks the number of relevant publications included in the review, categorized
by their focus on AI rights, moral status, or suffering [31].
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robot vacuums. Researchers found that many participants already perceived these technolo-
gies as somewhat conscious, which the study suggests could significantly impact Human-
Computer Interaction (HCI) by raising challenges related to empathy, power dynamics, and
the responsibility of interacting with machines perceived as conscious.

Similarly, [37] conducted experiments to assess public attitudes toward granting rights
to autonomous AI and robots, initially with EU members and later with a representative
sample of U.S. citizens. Their study revealed general resistance to most AI rights but noted
significant support for protections against cruelty. The findings were consistent across both
samples, demonstrating that public perceptions can be positively influenced by correcting
misconceptions about legal personhood for non-human entities, suggesting that public opinion
on AI rights is adaptable and could evolve.

2.2.2 The AIMS Survey

Researchers at The Sentience Institute conducted the Artificial Intelligence, Morality, and
Sentience (AIMS) Survey to explore public perceptions of AI sentience and moral considera-
tion. This nationally representative survey, first conducted in November and December 2021
with 1,232 U.S. adults, was later expanded with two additional waves in 2023, bringing the
total sample size around 2400 respondents.

The survey revealed a complex public stance on AI rights: while 71% of respondents
in 2023 agreed that sentient AI deserves to be treated with respect, only 38% supported
granting legal rights to AI. Notably, public concern for AI well-being and mind perception
significantly increased from 2021 to 2023. Despite this growing concern, there is also strong
resistance to advanced AI, with 69% favoring a ban on sentient AI. Demographic factors such
as younger age, male gender, being White or Asian, liberal political orientation, religious
affiliation, and exposure to AI narratives were found to predict positive emotions, trust, and
concern for AI treatment.

2.3 Review of Different Clustering Methods

Clustering is a key technique in data mining that involves grouping data into distinct cate-
gories, or clusters, without using predefined labels. This project aims to apply clustering
methods to the AIMS Survey dataset, which includes both numerical and categorical vari-
ables. The goal is to identify natural groupings of respondents based on their opinions
about AI sentience and rights. [48] offers a detailed comparison of clustering algorithms,
highlighting their strengths and weaknesses across various data mining scenarios. The study
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concludes that no single clustering algorithm is universally superior; the choice of algorithm
should depend on the specific characteristics of the dataset, such as size, shape, and the
presence of noise.

2.3.1 K-Means Clustering

K-means clustering is a widely used unsupervised learning algorithm in machine learning
and data science, particularly for solving clustering problems by partitioning a dataset into
distinct subgroups based on the features of the observations [4]. It operates by iteratively
assigning data points to one of K predefined clusters, where each data point is associated with
the nearest cluster centroid. This process continues until the algorithm converges, typically
when the centroids stabilize and the assignments no longer change. The objective is to
minimize the following function:

argmin
C

k

Â
i=1

Â
x2Ci

kx�µik2

Where:

• Ci represents the i-th cluster,

• x is a data point,

• µi is the centroid of the i-th cluster,

• k ·k denotes the Euclidean distance.

One of the key advantages of K-means is its computational efficiency, making it one of the
fastest clustering algorithms available, particularly suitable for large datasets [5]. However,
K-means is not without its limitations. A significant drawback is its susceptibility to falling
into local optima, which can lead to suboptimal clustering results, especially when the initial
placement of centroids is poorly chosen [67]. Additionally, K-means requires the number of
clusters K to be specified in advance, which can be challenging without prior knowledge of
the data’s underlying structure. To address this, the following methods can be employed:

Silhouette Score

The Silhouette Score is a measure used to evaluate the quality of clustering. It quantifies how
well each data point lies within its cluster compared to other clusters. The score ranges from
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-1 to 1, where a higher score indicates that the data point is well-matched to its own cluster
and poorly matched to neighboring clusters.

The Silhouette Score s(i) for an observation i is defined as:

s(i) =
b(i)�a(i)

max(a(i),b(i))

Where:

• a(i) is the average distance between i and all other points in the same cluster.

• b(i) is the minimum average distance between i and all points in the next nearest
cluster.

In this research, the silhouette score is used to determine the optimal number of clusters,
perform hyperparameter tuning, and evaluate the final results.

Elbow Method

The Elbow Method is one method to determine the optimal number of clusters for K-Means
clustering [33]. It involves running K-Means with different values of k (the number of
clusters) and plotting within-cluster sum of squares (WCSS) against k. The optimal number
of clusters is identified by the user based on the visual indication of wherever the "elbow"
point is on the plot, where adding more clusters results in diminishing returns in terms of
explained variance.

The WCSS is calculated as:

WCSS =
k

Â
i=1

Â
x2Ci

kx�µik2

Where:

• k is the number of clusters.

• x is a data point.

• µi is the centroid of cluster Ci.

• k ·k denotes the Euclidean distance3.

In order to find the optimal number of clusters K, both the Elbow Method and Silhouette
Scores will be run. By analyzing the resulting plots, the K value that yields the best balance
between explained variance and cluster quality will be selected for further analysis.

3Euclidean distance masures the straight-line distance between two points in Euclidean space.
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2.3.2 DBSCAN Clustering

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is a widely used
unsupervised learning algorithm designed to identify clusters of arbitrary shapes within
datasets that may contain noise and outliers [Ester et al.]. Unlike traditional clustering
algorithms that rely on predefined numbers of clusters, DBSCAN forms clusters based on
density of points in the dataset. It operates by grouping together points that are closely
packed together, marking points that are not reachable as outliers.

The algorithm relies on two key parameters:

• Eps: The radius that defines the neighborhood around a point.

• MinPts: The minimum number of points required to form a dense region (cluster).

A point is considered a core point if its e-neighborhood contains at least MinPts points. A
cluster is formed by all points that are density-reachable from core points. While DBSCAN
is good at discovering clusters of arbitrary shapes and is particularly effective in handling
datasets with noise and outliers, it comes with some challenges:

• The choice of Eps and MinPts parameters significantly influences the clustering out-
come, making it crucial to select them carefully for optimal results.

• DBSCAN can struggle with datasets that have clusters of varying densities, as a single
set of parameters may not be suitable for all clusters.

• The algorithm can be computationally intensive, particularly for large datasets, due to
the need to examine the neighborhood of each point.

Despite these challenges, DBSCAN remains a powerful tool for clustering, especially in
scenarios where the data contains noise or irregular cluster shapes. 4

NE ps(p) = {q 2 D | dist(p,q)< E ps} (2.1)

Where:

• NE ps(p) is the Eps-neighborhood of point p,

• D is the dataset,

4Various enhancements and variations of DBSCAN, such as VDBSCAN, FDBSCAN, DD_DBSCAN, and
IDBSCAN, have been developed to address its limitations, each offering trade-offs in terms of performance and
adaptability [55].
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• dist(p,q) is the distance between points p and q.

DBSCAN continues to be a preferred method in clustering tasks where traditional
algorithms like K-Means may fall short, particularly in complex datasets with irregular
cluster formations and the presence of noise [20].

2.3.3 Hierarchical Clustering

Hierarchical Clustering is an unsupervised learning algorithm used to organize data into
nested clusters, forming a tree-like structure known as a dendrogram [12]. Unlike K-Means,
which requires the number of clusters to be predefined, Hierarchical Clustering allows the
data to dictate the structure and number of clusters by building them step by step. Hierarchical
Clustering can be performed using two main approaches:

• Agglomerative (Bottom-Up) Approach: Starts with each data point as its own cluster
and iteratively merges the closest pairs of clusters.

• Divisive (Top-Down) Approach: Begins with all data points in a single cluster and
recursively splits them into smaller clusters.

The distance between clusters is a key factor in how they are merged. Some commonly
used distance metrics include:

Euclidean Distance:

dEuclidean(x,y) =

s
n

Â
i=1

(xi � yi)2 (2.2)

Measures the straight-line distance between two points in Euclidean space.

Manhattan (Cityblock) Distance:

dManhattan(x,y) =
n

Â
i=1

|xi � yi| (2.3)

The distance metric measures the sum of absolute differences between the coordinates of
two points.

Cosine Distance:
dCosine(x,y) = 1� Ân

i=1 xiyiq
Ân

i=1 x2
i

q
Ân

i=1 y2
i

(2.4)
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Measures the cosine of the angle between two non-zero vectors, focusing on the orienta-
tion rather than magnitude. The method for determining the distance between clusters is
determined by the linkage criteria:

Complete Linkage:

d(Ci,Cj) = max{d(xp,xq) | xp 2Ci,xq 2Cj} (2.5)

Defines the distance between two clusters as the maximum distance between any single data
point in the first cluster and any single data point in the second cluster, creating compact,
evenly sized clusters.

Single Linkage:
d(Ci,Cj) = min{d(xp,xq) | xp 2Ci,xq 2Cj} (2.6)

This defines the distance between two clusters as the minimum distance between any single
data point in each cluster, which can lead to "chain-like" clusters.

Average Linkage:
d(Ci,Cj) =

1
|Ci||Cj| Â

xp2Ci

Â
xq2Cj

d(xp,xq) (2.7)

This uses the average distance between all pairs of data points from each cluster, balancing
the characteristics of complete and single linkage.

Hierarchical Clustering is particularly useful for visualizing relationships in data through
dendrograms, allowing for easy exploration of different cluster configurations by cutting the
tree at various levels. However, this method can be computationally intensive and sensitive
to noise and outliers, especially in large datasets.

2.3.4 Comparing Different Methods

[41], a study comparing the above three methods finds that DBSCAN is particularly suited
for datasets with non-convex shapes5, well-separated clusters, or a high number of outliers.
[28] and [6] further explore the efficiency of these algorithms. [28] notes that DBSCAN is
more effective in managing noise and outliers compared to hierarchical clustering, which can
be time-consuming. [6] concludes that K-Means is preferable for larger datasets due to faster

5A convex shape in Geometry is a shape where the line joining every two points of the shape lies completely
inside the shape.
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execution time and stable memory usage, whereas Agglomerative Hierarchical Clustering
is better suited for smaller datasets. As shown in Table 2.1, the strengths and weaknesses
of different clustering methods vary depending on the dataset and application. Given the
strengths and weaknesses of different clustering methods, this research will use a combined
approach to determine the best clustering method for the AIMS Survey dataset. By applying
K-Means, DBSCAN, and Hierarchical Clustering to the data, the study will identify which
method provides the most meaningful clusters. Hierarchical Clustering will help visualize
relationships in the data through dendrograms, allowing flexibility in exploring different
cluster configurations. Once the number of clusters is estimated, K-Means will be applied for
its efficiency. DBSCAN will also be applied to detect clusters in data with irregular shapes
and to handle noise and outliers.

Table 2.1 Comparison of Clustering Methods

Method Strengths Weaknesses Best For
K-Means Clustering Handles mixed data

types, interpretable
clusters

Sensitive to initializa-
tion, requires specify-
ing K

Mixed-type data clus-
tering

DBSCAN Clustering No need for K, han-
dles noise, finds
arbitrary-shaped
clusters

Parameter sensitivity,
may not scale well
with high dimensions

Identifying core clus-
ters and outliers

Agglomerative Hier-
archical Clustering

Visual representation
(dendrogram), flexible
number of clusters

Computationally in-
tensive, less effective
for large datasets

Visualizing hierarchi-
cal relationships

Evaluating Cluster Validity

Once the clustering results are obtained, both quantitative and qualitative measures will be
employed to assess the validity and quality of the clusters. In this study, cluster validity will
be evaluated using the Silhouette Score and the Davies-Bouldin Index (DBINDEX), followed
by a qualitative assessment of the results.

The Silhouette Score is selected for its effectiveness in identifying relationships within
and between clusters, providing insights into the cohesion and separation of the groups.
Similarly, the Davies-Bouldin Index is chosen for its focus on both the compactness of
clusters and their separation. This dual approach allows for a comprehensive evaluation of
the clustering performance.
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The Davies-Bouldin Index is defined as follows:

DB =
1
k

k

Â
i=1

max
i6= j

✓
di +d j

d(ci,c j)

◆
,

where k is the number of clusters, di represents the average distance of all points in the ith
cluster from the cluster centroid, and d(ci,c j) is the distance between the centroids of the ith
and jth clusters. A lower DBINDEX indicates better clustering, reflecting more compact and
well-separated clusters.

2.4 Feature Reduction Techniques

Reducing the number of features in the dataset is a critical aspect of this project for two main
reasons:

1. Many machine learning models, such as K-Means and DBSCAN, encounter significant
challenges when clustering high-dimensional data, a phenomenon known as the "curse
of dimensionality." This term refers to the exponential increase in computational
complexity, inefficiency in space utilization, and diminished visualization capabilities
as the number of dimensions grows [65]. By reducing the dimensionality of the dataset,
these issues can be mitigated, leading to improved performance and accuracy of the
models.

2. Grouping together similar beliefs about AI sentience and rights simplifies the evaluation
of clustering results, making it easier to interpret and analyze the outcomes.

The results are displayed and discussed in Chapter 4.

2.4.1 Qualitative Feature Reduction

[49] analyzed the survey items in two ways: as individual standalone items and by averaging
or summing specific items to compute index variables. Researchers behind the first wave of
the AIMS Survey provided 12 index variables, resulting in the initial groupings of features
[50]. These groupings serve as a foundation for qualitatively reducing the dimensionality of
the dataset. To ensure the quality of these groupings, two qualitative methods will be used:

1. Correlation Matrix with Heatmap:
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• A correlation matrix can be used to visualize and select features based on their
relationships, as strong correlations between features suggest a shared underlying
dimension or theme, justifying their combination into indices or composite
variables [13].

• The heatmap will provide a visual representation of these correlations, making
it easier to identify which features are closely related and should be grouped
together.

2. Hierarchical Clustering on the Correlation Matrix:

• Hierarchical clustering will be applied to the findings from the correlation matrix,
as it is commonly used in data analysis procedures to group features with similar
patterns [63].

• By combining the matrix for heatmap visualization with hierarchical clustering,
this research can ensure that features with similar patterns are grouped closely
together [30].

These methods help ensure the reduced feature set retains its relevance and interpretability,
allowing for more effective clustering and analysis in subsequent stages of the project.

2.4.2 Quantitative Feature Reduction

PCA, UMAP and t-SNE

In addition to qualitative methods, quantitative techniques such as Principal Component
Analysis (PCA), Uniform Manifold Approximation and Projection (UMAP), and t-distributed
Stochastic Neighbor Embedding (t-SNE) can be employed to reduce dimensionality of the
data in a more neutral way [54].

Principal Component Analysis (PCA) PCA is a widely used technique that transforms
original variables into a new set of uncorrelated variables that successively maximize variance.
This method effectively reduces dimensionality in the dataset while retaining the most
important information [32].

Uniform Manifold Approximation and Projection (UMAP) UMAP is a non-linear6

technique that seeks to preserve the global structure of data while reducing its dimensionality

6Linear techniques reduce dimensionality using straight-line transformations, while non-linear techniques
like UMAP capture and preserve complex, curved relationships in data.
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[40]. It is particularly useful for visualizing high-dimensional data and uncovering complex
patterns. Additionally, UMAP can maintain salient topological and geometric features of
data even as it reduces its dimensionality.

t-distributed Stochastic Neighbor Embedding (t-SNE) t-SNE is another non-linear
dimension reduction technique that maximizes the divergence between the probability distri-
butions in the high-dimensional and low-dimensional spaces, making it particularly effective
for visualizing clusters in data [64]. Similar to UMAP, t-SNE also aims to preservetopo-
logical and geometric structures inherent in data, providing a meaningful low-dimensional
representation.

The results of all three feature reduction techniques can be seen in Section 4.1.



Chapter 3

Research Methodology

For more details on the code and data used in this study, please refer to the project’s GitHub
repository1.

3.1 Dataset Description

Two rounds of survey data were collected from preregistered participants in the AIMS survey,
with the first round conducted in 2021 and the second in 2023 [49][51]. The combined
dataset consists of responses from a total of 2,401 participants, spanning approximately
140 columns of variables. The dataset includes both numerical and categorical variables,
capturing a wide range of respondents’ opinions and demographic information. The key
variables can be grouped as follows:

3.1.1 Numerical Variables

The dataset includes several variables that are primarily based on Likert scales2 or other
numerical values. These variables capture a range of attitudes and perceptions related to AI
sentience, rights, risks, and moral considerations for non-human entities. Key numerical
variables include:

• Attitudes Toward AI Sentience and Rights: Variables such as AS Caution, Pro-AS
Activism, and AS Treatment, measured on a Likert scale (1-7), reflect respondents’
support for various stances on AI sentience and the ethical treatment of AI entities.

1Click the words ’Github repository’
2A Likert scale is a rating scale used in surveys to measure attitudes or opinions, typically ranging across

different values.

https://github.com/sucizem/Dissertation_Code
https://github.com/sucizem/Dissertation_Code
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• Concerns Related to AI: Malevolence Protection and AI Moral Concern, also mea-
sured on a Likert scale (1-7), gauge respondents’ concerns about the potential risks
posed by AI, including moral and ethical considerations.

• Perception of AI’s Cognitive Abilities and Threats: Mind Perception and Per-
ceived Threat capture perceptions of AI’s cognitive capabilities and potential dangers,
measured using scales that reflect varying degrees of agreement or concern.

• Moral Consideration for Non-Human Entities: Variables such as MCA1, MCA2,
MCEn1, and MCEn2, typically measured on Likert scales (1-7), assess the moral status
accorded to animals and the environment by respondents.

• Categorized Concerns: Variables like MCE21 to MCE31 reflect categorized moral
concerns towards different types of AI, rated on a scale from 1 to 5, indicating level of
moral concern.

• Scale (1-100):Mind Perception variables (MP1, MP2, MP3, MP4) assess respondents’
beliefs about the extent to which AI currently possesses cognitive abilities, using a
scale from 1 to 100.

3.1.2 Categorical and Binary Variables

The dataset also includes categorical and binary variables that capture demographic informa-
tion, experiences with AI, and other personal characteristics. These variables include:

• Demographics: Age, gender, education, income, and diet, which provide basic demo-
graphic profiles of the respondents.

• Experiences with AI: Binary variables such as ownership of AI devices, work with
AI, and various experiences (e.g., seeing AI being mistreated), which capture the
respondents’ interactions with AI technologies.

• Political and Religious Affiliations: Categorical variables like politics, religion,
and related dummy variables represent the respondents’ political views and religious
beliefs.

• Dummy Coded Variables: Binary representations of categorical variables (e.g.,
religionRNR, dietMR) are used for easier analysis in statistical models.
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3.2 Data Preprocessing

Standardizing the Numerical Data

Given the variety of numerical variables in the dataset, including Likert scales and other
numerical measures, standardization is essential before conducting any clustering analysis.
These variables, as detailed in the previous section, capture a wide range of attitudes,
perceptions, and moral considerations related to AI and non-human entities. The inherent
differences in scales and units across these variables necessitated a normalization process to
ensure that each feature contributed equally to the clustering results.

StandarScale

The StandardScaler method was used for data standardization. StandardScaler operates
by subtracting the mean of each feature and scaling it to unit variance. This process transforms
the data so that each feature has a mean of 0 and a standard deviation of 1, effectively placing
all features on a common scale.

By standardizing the data, StandardScaler mitigates risk of any one feature dispropor-
tionately influencing clustering outcomes due to its scale. Moreover, StandardScaler is
well-suited for algorithms like hierarchical clustering, which assume normally distributed
data. Normalizing the data ensured the clustering results reflect true similarities and differ-
ences between data points rather than artifacts of scale differences.

3.2.1 Categorical Data Preprocessing: Focus on Demographics

For this research, the focus was on key demographic variables, including age, dietMR,
education_recode, gender, income_recode, politics, and raceethnicity. These
variables were extracted from the dataset for detailed inspection and preprocessing.

Handling Missing Values

The dataset contained a total of 2,207 missing values across all columns, with the majority
located in the additional column provided for respondents to specify their religion if it was
not listed in the predefined options. This column, labeled relelse, contained various entries,
some matching existing categories in the religion column.
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Consolidating Religious Responses

To ensure consistency in the religion data, entries in the relelse column that corresponded
to known categories in the religion column were mapped accordingly. For example, entries
such as “Roman Catholic” or “Born-again Christian” were mapped to their corresponding
categories “Catholic” and “Protestant,” respectively. This mapping was performed using a
predefined dictionary categorizing similar or synonymous responses under the appropriate
religion which ensured entries in the relelse column were categorized consistently with
predefined religious categories in the religion column.

Consistency Check with Religion Categories

After mapping the relelse, a consistency check was performed to ensure that the classifi-
cations were accurate. This involved comparing the religion data against a binary variable
religionRNR provided in the dataset, where 0 indicated religious affiliation and 1 indicated
no religious affiliation.

A function was created to flag inconsistencies, such as when a respondent identified as
religious (e.g., Protestant) but was marked as 1 (not religious) in the religionRNR column.
Rows with such inconsistencies were identified and addressed.

This iterative process ensured that the religious data was accurately categorized and
consistent with the respondents’ self-identified religious status. As a result, the distribution
of different religions within the dataset was visualized, as shown in Figure 3.1. This figure
provides a clear overview of the proportions of various religious affiliations among the survey
participants.

3.2.2 Recoding of Demographic Variables

For a more meaningful analysis of the demographic data, certain variables were recoded into
categorical groups based on their values. This process was particularly applied to the age and
politics columns in the dataset.

Age Recoding

The age variable, initially provided as a continuous numerical value, was categorized into
three distinct age groups:

• 18 to 34 years: Represented by the label 18_34

• 35 to 54 years: Represented by the label 35_54
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Fig. 3.1 Distribution of religious affiliations of survey participants.
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• 55 years and older: Represented by the label 55_

This recoding was achieved by defining a function that assigns each age to one of the
three categories. The function was then applied to the age column, resulting in the creation
of a new age_recode column. The results are visualized in Appendix A.1.

3.2.3 Politics Recoding

Similarly, the politics column, which initially contained a range of values representing
political alignment on a continuous scale, was recoded into three categories:

• Very Liberal: Assigned to values less than or equal to 2.

• Moderate: Assigned to values between 2 and 4.

• Very Conservative: Assigned to values greater than or equal to 4.

A function was defined to implement this recoding, transforming the continuous politics
values into the aforementioned categorical groups. This recoding provides a simplified view
of political orientation, seen in Figure A.1c, and subsequently simpler correlation assessment
with other variables in the dataset3.

3.2.4 Grouping Index Variables

Employing a qualitative approach reduces dimensionality of the dataset while preserving
interpretability of features. This method involved aggregating related numerical columns into
index variables based on their qualitative attributes. These index variables were derived from
the original report, where items were averaged or summed to compute composite variables.
The resulting 12 distinct features include Table 3.1:

3The decision to recode was driven by the need to make the analysis clearer and to identify patterns more
easily. However, this approach may result in some loss of granularity.
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Table 3.1 Summary of Index Variables

Name of Group Average/Sum of Columns What the Group Repre-
sents

AS Caution Average of PMC #1, 3, 4 Caution towards artificial
sentience

Pro-AS Activism Average of PMC #2, 5-12 Support for advocating arti-
ficial sentience

AS Treatment Average of MCE #1-6 Concern for AS treatment
Malevolence Protection Average of MCE #7-9 Support for AI protection

from malevolence
AI Moral Concern Average of MCE #21-31 Moral concern for AIs
Mind Perception Average of MP #1-4 Attribution of mind to AIs
Perceived Threat Average of SI #2-4 Perception of AIs as threats
Moral Consideration of
Nonhuman Animals

Average of MCA #1-2 Concern for nonhuman ani-
mals

Moral Consideration of
the Environment

Average of MCEn #1-2 Concern for the environ-
ment

Techno-Animism Average of TA #1-2 Belief in spirits in artificial
entities

Substratism Average of Sub #1-2 Prejudice against non-
carbon-based entities

Anthropomorphism Sum of Anth #1-4 Attribution of human-like
qualities to nonhumans

Justification for Index Groupings

To simplify the dataset and enhance the analysis of the 12 features, the original index variables
were grouped based on their correlations, as visualized in the Correlation Matrix Heatmap
seen in Figure 3.2 and analyzed through a Hierarchical Clustering Dendrogram, seen in
Figure 3.3. Converting the correlation matrix into a distance matrix enabled the effective
application of hierarchical clustering4. This approach grouped strongly correlated features
into indices, reducing redundancy while preserving core information. The alignment between
hierarchical clustering and the correlation heatmap supports these groupings, making the
dataset more manageable for further analyses like K-Means and DBSCAN, leading to more
efficient and interpretable results.

4Hierarchical Clustering requires a distance matrix, and the method was found on StackExchange.

https://stats.stackexchange.com/questions/165194/using-correlation-as-distance-metric-for-hierarchical-clustering
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Fig. 3.2 Correlation Matrix Heatmap of the Index Variables.
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Fig. 3.3 Hierarchical Clustering on the Correlation Matrix Heatmap of the Index Variables.
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Table 3.2 Index Groupings Based on Correlations

Group Included Features Justification
Group 1 AS Caution, Perceived Threat These features were grouped to-

gether due to their close correlation
(0.77), both reflecting cautionary at-
titudes toward AI developments.

Group 2 Moral Consideration of Nonhuman
Animals, Moral Consideration of the
Environment

These features exhibited a very
strong correlation (0.59), justifying
their combination into a single moral
consideration index.

Group 3 Pro-AS Activism, AS Treatment,
Malevolence Protection

These features were grouped based
on their correlations (0.65 to 0.94),
representing active support and pro-
tective attitudes toward Artificial
Sentience (AS).

Group 4 Mind Perception, Techno-Animism,
Anthropomorphism

These features reflect how individu-
als perceive AI and attribute human-
like or spiritual qualities to non-
human entities.

Group 5 Substratism Substratism remained distinct due to
its unique nature but was considered
in the broader context of caution and
threat perceptions.



Chapter 4

Results

4.1 Applying Feature Reduction Techniques

The quantitative feature reduction techniques described in Section 2.4.2 were applied using
both 2 and 3 components to evaluate their ability to reveal meaningful patterns or clusters.
PCA and t-SNE did not produce clear clusters, suggesting they may not adequately capture
the dataset’s complexity. The 2D UMAP plot (Figure 4.1) showed a linear distribution of data
points, and when extended to 3D, UMAP revealed more distinct and interpretable clusters,
as can be seen in Figure 4.2. Among the three methods, UMAP demonstrated a stronger
ability to capture underlying complexity of the data in three dimensions. The visualizations
for the other two methods can be seen in Appendix B.2 and B.1

Fig. 4.1 PCA, t-SNE, UMAP results with 3 components.



30 Results

Fig. 4.2 UMAP results with 3 components 3D visualization.

4.2 Choosing Best Cluster Algorithm and Feature Reduc-
tion Technique

The reduced feature set was applied to various clustering algorithms, including K-Means,
DBSCAN, and Hierarchical Clustering. The quality of the clustering results was rigorously
assessed using both quantitative and qualitative metrics. Quantitatively, the Silhouette Score
and Davies-Bouldin Index (DB-Index) were employed to measure the compactness and
separation of the clusters. Qualitatively, the clusters were evaluated by analyzing their
behavior across the original 12 features, providing a deeper understanding of how each
algorithm’s clusters scored on these features. This qualitative assessment was visualized in
Figures C.1 and C.2 in Appendix C.1 using heat maps visualizing the mean, allowing for a
clear comparison of the distribution of features within each cluster. The combination of these
quantitative and qualitative methods enables a comprehensive evaluation of the clustering
results, ensuring the most effective algorithm and clustering configuration are selected for
the project.

4.2.1 K-Means Results

K-Means clustering was applied to both the five reduced feature groups and the UMAP-
reduced feature set. The optimal number of clusters (K) was determined using the Silhouette
Score and Elbow Method for both datasets, with K values of 2, 3, and 4 being tested. The
quality of the resulting clusters was then evaluated using the Silhouette Score and Davies-
Bouldin Index, and can be seen in Table 4.1.
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Table 4.1 Comparison of K-Means Clustering Results on UMAP-Reduced and Feature-
Reduced Datasets

Method Silhouette Score Davies-Bouldin
Index

Optimal Number of
Clusters (K)

K-Means on UMAP-
Reduced Features
(Figure 4.3)

0.570 0.691 4

K-Means on Re-
duced Feature
Groups (Figure 4.4)

0.1851 1.5987 3

When comparing these results, the K-Means clustering on the UMAP-reduced features
with K = 4 Figure 4.3) outperformed clustering on the reduced feature groups Figure 4.4,
making it the best performing model in this analysis.

Fig. 4.3 K-Means Clustering Algorithm on reduced UMAP features with 3 components
performed the best.
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Fig. 4.4 K-Means Clustering Algorithm on reduced features with 3 components.
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4.2.2 DBSCAN Results

Different parameter configurations were tested for DBSCAN, and the best-performing
parameters, which are reflected in the results presented, were an eps value of 0.2 and a
min_samples value of 5 for the reduced features, and an eps value of 0.3 and min_samples
value of 5 for UMAP, as can be seen in Table 4.2.

Table 4.2 Comparison of DBSCAN Clustering Results on UMAP and Reduced Features

Method Silhouette Score Davies-Bouldin
Index

Number of Clusters
Formed

DBSCAN on UMAP
Features (Figure 4.5)

-0.1497 2.9447 3

DBSCAN on Re-
duced Features
(Figure 4.6)

0.8957 0.1300 3

The analysis showed that applying the DBSCAN algorithm to UMAP features resulted in
3 distinct clusters, with a Silhouette Score of -0.1497 and a Davies-Bouldin Index of 2.9447,
indicating poor clustering quality. In contrast, when DBSCAN was applied to the reduced
features, it also produced 3 clusters but with a significantly higher Silhouette Score of 0.8957
and a much lower Davies-Bouldin Index of 0.1300. However, despite the superior quality
metrics, the visualization of the clusters formed by the reduced features, as seen in Figure
4.6, revealed disproportionate cluster sizes, specifically, 9 points in one cluster, 5 points in
another, and 2,387 points categorized as noise. While the UMAP features were somewhat
more effective in capturing the underlying structure of the data compared to the reduced
features, neither approach yielded optimal results.



34 Results

Fig. 4.5 DBSCAN Algorithm on reduced UMAP features with 3 components.

4.2.3 Hierarchical Clustering Results

Hierarchical clustering was employed to analyze the 12 qualitative features, with the goal of
uncovering distinct groups within the dataset. The evaluation process involved several steps
to ensure the robustness and quality of the clustering results:

4.2.4 Selection of Clustering Combinations

To explore different clustering structures, various combinations of linkage methods and
distance measures were tested1. Dendrograms were generated for each combination to
visualize the hierarchical structure of the clusters. Based on the visual results, the following
combinations were selected for their clear and distinct separations between clusters, making
them visually interpretable compared to other combinations, as can be seen in Figure 4.7 and
Appendix C.2.

• Cityblock + Complete

• Euclidean + Complete

• Euclidean + Ward

1To see the visualization of each distance + linkage method, please refer to the GitHub.
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Fig. 4.6 DBSCAN on reduced features: Cluster -1 has 2387 values, Cluster 0 has 9 and
Cluster 1 has 5.
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4.2.5 Quantitative Evaluation

Table 4.3 shows that amonf=g the tested combinations, the Cityblock + Complete com-
bination performed the best, yielding the highest Silhouette Score (0.145) and the lowest
Davies-Bouldin Index (1.475).

Table 4.3 Comparison of Hierarchical Clustering Methods on 12 Features

Method Silhouette Score Davies-Bouldin Index
Cityblock + Complete 0.145 1.475

Euclidean + Complete 0.096 2.007

Euclidean + Ward 0.105 1.995

Comparison with Reduced Features Hierarchical clustering was also applied to a reduced
set of features derived from the original 12. However, the results in Table 4.4 show that the
reduced features did not perform as well as the original index groupings.

Table 4.4 Comparison of Hierarchical Clustering Methods on Reduced Features

Method Silhouette Score Davies-Bouldin
Index

Inertia

Cityblock + Com-
plete

0.086 2.221 5638.36

Euclidean + Com-
plete

0.102 1.971 4911.71

Euclidean + Ward 0.113 2.176 5329.47

Conclusion: Among the tested combinations, the Cityblock + Complete combination
in Figure 4.7 yielded the best results in the hierarchical clustering analysis, achieving the
highest Silhouette Score (0.145) and the lowest Davies-Bouldin Index (1.475).
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Fig. 4.7 From all of the linkage and distance metric combinations, Cityblock linkage and
Complete Distance with 3 clusters performed best overall.
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4.3 Qualitative Evaluation

4.3.1 K-Means Clustering with UMAP

Table 4.5 shows the result of evaluating the four distinct clusters produced by K-Means
clusters with UMAP across the 12 features in Table 3.1.

Table 4.5 Summary of Clusters Based on AI Perception

Cluster Description Data Points
Cluster 0 Generally supportive of AI activism and treatment with moder-

ate concerns about AI’s moral implications and potential risks.
Members are open to attributing lifelike qualities to AI, though
with some skepticism.

718

Cluster 1 More cautious and skeptical about AI. Exhibits strong resis-
tance to AI activism and treatment, with significant concerns
about AI’s potential risks and moral implications.

577

Cluster 2 Highly supportive of AI, viewing it positively. Members are
open to attributing human-like qualities to AI, show high con-
cern for AI’s moral implications, and perceive less threat from
AI.

435

Cluster 3 Neutral or slightly negative attitude towards AI, with moderate
resistance to AI activism and treatment. Members are some-
what skeptical about AI’s potential for human-like qualities.

671

4.3.2 Cityblock and Complete Hierarchical Clustering with 12 Features

The same evaluation was performed on the 3 clusters produced by the Hierarchical Clustering
with 12 features, and can be seen in Table 4.6
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Table 4.6 Summary of Hierarchical (Cityblock and Complete) Clusters Based on AI Percep-
tion

Cluster Description Data Points
Cluster 3 Represents the largest cluster, characterized by moderate views

across all dimensions. Individuals in this cluster are generally
neutral or indifferent towards AI, with no strong inclinations
towards either positive or negative perceptions. This group
likely represents a general population with a middle-ground
perspective.

2006

Cluster 1 Displays strong positive attitudes towards AI activism, treat-
ment, and moral concerns. Members are supportive of AI,
showing a proactive stance on its potential benefits and a belief
in its anthropomorphic qualities. They demonstrate a high
level of moral awareness concerning AI.

290

Cluster 2 Characterized by caution and skepticism towards AI. Mem-
bers are less supportive of AI activism and treatment, showing
significant concern about AI’s potential risks and moral impli-
cations. They are likely to perceive AI as a threat rather than
an opportunity.

105

Conclusion: The analysis revealed that K-Means clustering, particularly when combined
with UMAP, produced more distinct and interpretable clusters compared to other methods.
The clusters generated by K-Means + UMAP captured a wide range of attitudes towards
AI, from supportive and progressive stances to more cautious and skeptical views. These
clusters demonstrated clear separation between groups, particularly in areas such as AI
caution, activism, and moral concern, making them more actionable for further analysis. In
contrast, the DBSCAN clustering method, which was considered alongside UMAP, did not
yield as meaningful or well-separated clusters. This led to the exploration of Hierarchical
Clustering with Cityblock and Complete linkage. While this approach identified distinct
clusters, they were less interpretable, less varied, and resulted in imbalanced cluster sizes
compared to those generated by K-Means.
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4.3.3 Final Verdict

K-Means + UMAP provides more distinct and interpretable clusters, capturing a wide range
of opinions and making it easier to identify key segments in the data. Figure 4.8 provides a
visualization of the cluster features of the chosen clustering method.

Fig. 4.8 A Spider Graph of the Cluster Features using K-Means UMAP Combination.

4.4 Demographic Features

4.4.1 Summary of Main Demographic Features

The tables below provide a summarized description of cluster demographics. Figure 4.9
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Fig. 4.9 A visualization of the demographic distribution of the clusters.
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Cluster 0

Table 4.7 Summary of Cluster 0 Demographic Characteristics

Characteristic Description
Dietary Preference Majority are non-restricted (85.79%)
Education Over half have a high school education or less (56.96%)
Gender More females (57.80%)
Income Balanced distribution with a slight skew towards lower income
Race/Ethnicity Predominantly White (64.21%), but with significant non-White

representation (33.98%)
Age Well-distributed across all age groups
Political Affiliation Predominantly moderate (64.90%) with a significant liberal pres-

ence (22.14%)

Cluster 1

Table 4.8 Summary of Cluster 1 Demographic Characteristics

Characteristic Description
Dietary Preference Majority non-restricted (92.20%)
Education Similar to Cluster 0, with the majority having lower educational

attainment
Gender Slightly more females (54.77%)
Income Higher income distribution, with 36.57% earning above 100k
Race/Ethnicity Predominantly White (77.12%) with less diversity
Age Majority are older adults (59.79%)
Political Affiliation Strong conservative presence (37.78%), though still majority mod-

erate (45.93%)
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Cluster 2

Table 4.9 Summary of Cluster 2 Demographic Characteristics

Characteristic Description
Dietary Preference Less skewed towards non-restricted diets (73.56%)
Education Higher educational attainment with 41.15% holding an associate’s

or bachelor’s degree
Gender Predominantly male (59.54%)
Income Higher income, with 51.72% earning above 100k
Race/Ethnicity More diverse, with 43.45% non-White
Age Dominated by younger and middle-aged adults
Political Affiliation Mostly moderate (48.05%) with a significant conservative element

(32.18%)

Cluster 3

Table 4.10 Summary of Cluster 3 Demographic Characteristics

Characteristic Description
Dietary Preference Majority non-restricted (89.12%)
Education Similar to Clusters 0 and 1, with the majority having lower educa-

tional attainment
Gender More females (57.53%)
Income Balanced income distribution with a slight skew towards middle

income
Race/Ethnicity Predominantly White (73.03%)
Age Majority are older adults (49.93%)
Political Affiliation Predominantly moderate (59.17%), with balanced conservative and

liberal representation
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Overall Observations

Table 4.11 Summary of Cluster Characteristics

Cluster Description
Cluster 0 Fairly balanced in most demographics, with a slight skew towards lower

education and middle income. Politically moderate with a significant liberal
presence.

Cluster 1 Higher income, predominantly White, older, and politically conservative.
Cluster 2 More diverse, higher income, higher education, and younger. Politically

moderate with a significant conservative presence.
Cluster 3 Similar to Cluster 1 in terms of income and education but with a more

balanced political affiliation and an older population.

4.4.2 Comparing Cluster Features with Demographics

In reviewing the demographic characteristics of each cluster, several patterns emerge that
align with their respective attitudes towards AI.

Cluster 0: Consists of individuals who are moderately supportive of AI, as reflected in
their general openness to AI activism and treatment. The cluster is demographically balanced,
with a slight skew towards higher income and a predominantly moderate political affiliation.
This mix of middle-aged to older adults, with varied education levels and a significant liberal
presence, suggests a group that is cautiously optimistic about AI, likely influenced by their
socioeconomic stability and moderate views.

Cluster 1: Stands out as more cautious and skeptical towards AI. Predominantly older,
affluent, and politically conservative, this group exhibits strong resistance to AI activism and
low moral concern for AI. The demographic makeup—predominantly White, with a lower
level of educational attainment—aligns with a tendency to view AI with suspicion and to
prioritize traditional values, leading to a generally more cautious approach.

Cluster 2: Notably younger, more diverse, and better educated, with a strong skew towards
higher income. This cluster is characterized by its proactive and supportive stance towards AI,
reflecting high levels of moral concern and openness to AI having mind-like qualities. The
demographic profile of this group, with its higher education levels and more liberal-leaning
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political views, supports a forward-thinking perspective on AI, likely driven by the group’s
optimism about technological advancements and their potential societal benefits.

Cluster 3: Presents a more neutral stance on AI, with some skepticism about AI’s capabili-
ties and a cautious approach to its potential risks. This cluster is older, moderately affluent,
and predominantly White, with a balanced mix of political affiliations. The demographic
profile suggests a group that is neither strongly for nor against AI, instead reflecting a cautious
yet open-minded perspective, shaped by their age, income distribution, and moderate political
views.

4.4.3 Comparing Cluster Results with the AIMS Survey

The 2023 Artificial Intelligence, Morality, and Sentience (AIMS) Survey provided a broad
overview of public sentiment toward AI sentience and rights, revealing insightful demo-
graphic trends within the survey dataset. This research builds on these findings by offering a
detailed breakdown of how specific demographic groups align with varying attitudes toward
AI. Both analyses indicate a complex and evolving public opinion, where optimism about
AI’s potential is tempered by substantial concerns, particularly among older, conservative,
and less diverse demographics.

Both the AIMS survey and the clustering analysis suggest that a significant portion of the
public is open to the possibility of AI sentience. The AIMS survey revealed that nearly 40%
of Americans believe that developing sentient AI is possible, while less than 25% believe it
is impossible. The clustering analysis adds depth to this finding by showing that belief in AI
sentience is particularly strong among Cluster 2, which is characterized by younger, more
diverse, and more educated individuals. In contrast, Cluster 1, composed of older and more
conservative groups, shows greater skepticism toward AI sentience.

The AIMS study highlighted a reluctance among the public to grant AI legal rights,
despite a general agreement that sentient AI deserves respectful treatment2. This reluctance
is mirrored in Cluster 1 from the analysis, where there is strong resistance to AI activism
and low moral concern for AI. On the other hand, Cluster 2 demonstrates a more proactive
stance on AI rights, aligning with the AIMS survey’s findings that certain demographics,
particularly younger and more educated individuals, are more open to considering AI’s moral
status.

The AIMS survey found substantial resistance to advanced AI, with 63% of respondents
supporting a ban on AI smarter than humans and 69% favoring a ban on sentient AI. This

271% agree on respectful treatment, but only 38% support legal rights
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broad resistance is particularly evident in Cluster 1 of the analysis, where skepticism towards
AI is most pronounced. The demographic profile of this cluster—older, conservative, and
predominantly White—closely aligns with the survey’s findings that these groups are more
likely to support restrictions on AI development.

Both the AIMS survey and the clustering analysis highlight the influence of demographic
factors such as age, education, and political orientation on attitudes toward AI, drawing
attention to distinct trends in beliefs across different groups. While the AIMS survey provided
a general overview, the clustering analysis offers more granular insights, demonstrating how
these demographic factors converge to form distinct groups with varying degrees of support
or resistance to AI.

4.5 Limitations

This study faced several limitations that should be acknowledged. One of the primary
limitations was the demographic imbalances present in the dataset. Although the demographic
features—such as dietary preference, education level, gender, income bracket, race/ethnicity,
religion, age group, and political affiliation—were not directly used in the clustering process,
they may still have influenced the interpretation of the demographic distributions within each
cluster. Moreover, the lack of distinguishing between "sentience" and "consciousness" may
have added complexity to the analysis, as these terms were sometimes used interchangeably,
potentially affecting the clarity of the survey results. The study’s reliance on existing survey
data from the AIMS Survey presents limitations related to the scope and depth of the data.
The survey’s design and the questions asked may have influenced the responses, potentially
leading to biases in the clustering analysis.

Another significant limitation lies in the clustering process itself. Clustering involves
data compression, which can both highlight and obscure important information. The chosen
clustering algorithms and feature reduction techniques were carefully evaluated using metrics
such as the Silhouette Score and Davies-Bouldin Index, but the results are still subject to the
inherent biases and limitations of these methods. As a result, some meaningful patterns may
have been overlooked or misinterpreted.

4.6 Future Research

Future research should address the limitations identified in this study to enhance the ro-
bustness and generalizability of the findings. To begin with, more balanced and diverse
datasets should be collected to mitigate demographic imbalances and ensure that the clusters
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identified truly reflect the full spectrum of public opinions on AI sentience and rights. Lon-
gitudinal studies of this sort could provide insights into how these perceptions evolve over
time, offering a more dynamic understanding of public attitudes.

Additionally, future studies could explore more sophisticated clustering techniques and
alternative feature reduction methods to capture more nuanced patterns in the data. With larger
datasets, techniques such as deep learning-based clustering or hybrid approaches combining
multiple algorithms could be investigated to improve the accuracy and interpretability of the
results.

Clarifying the terminology used in surveys and research is also important. Developing
more precise definitions of "sentience" and "consciousness" in the context of AI will help
ensure consistency across studies and improve the comparability of results.

Lastly, expanding the scope of research to include qualitative methods, such as inter-
views or focus groups, could provide deeper insights into the underlying reasons behind
people’s perceptions of AI sentience and rights. This mixed-methods approach would com-
plement the quantitative findings and offer a more comprehensive understanding of the ethical
implications of AI development.

By addressing these areas in future research, we can develop a more nuanced and informed
perspective on AI sentience and rights.



Chapter 5

Conclusion

5.1 Summary of Findings

The primary goal of this thesis was to evaluate public perceptions of AI sentience and rights
through an in-depth analysis of survey data using unsupervised clustering algorithms. The
study began by exploring the background of AI sentience and moral rights, highlighting
cases where individuals have been misled into attributing sentience to artificial beings. It also
recognized that while various theories of mind provide diverse perspectives on AI sentience
and moral status, the lack of a clear expert consensus adds complexity to the issue. This
ambiguity complicates the ethical landscape surrounding AI, highlighting the need for a
deeper understanding of public perceptions to guide future decisions on how to responsibly
integrate increasingly advanced AI systems into society. Furthermore, the study aimed to
address the need for more empirical research on AI sentience and moral status, as AI’s rapidly
evolving capabilities continue to outpace our ethical frameworks and societal values.

5.2 Contributions to the Field of AI Sentience and Rights

This study sought to fill a gap in the existing literature by identifying the demographic factors
associated with various beliefs about AI sentience and rights, thereby laying the groundwork
for more focused and impactful future research.

The clustering analysis revealed several key findings:
K-Means Clustering with UMAP identified four distinct clusters of respondents, each

characterized by varying degrees of caution, activism, and perception of AI. These clusters
ranged from highly supportive groups that view AI positively to more cautious or skeptical
groups that express significant concerns about AI’s potential risks and moral implications.
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The demographic analysis of these clusters provided additional context, showing the attitudes
towards AI are which are linked to demographic factors such as age, education, income, and
political affiliation. For instance, younger, more educated, and higher-income individuals
were generally more supportive of AI, whereas older, less educated, and more conservative
individuals tended to be more skeptical. The study’s use of machine learning clustering
algorithms, particularly K-Means and DBSCAN with UMAP, offered a novn-linear approach
to uncovering hidden patterns in survey data. By doing so, the research not only identified
distinct groups within the survey population but also sheds light on the underlying factors
that drive their beliefs about AI. As AI systems continue to advance, understanding public
sentiment will be crucial for policymakers, researchers, and ethicists. This study provides a
foundation for more informed discussions on AI rights and helps anticipate potential areas of
public concern that may arise as AI capabilities grow.

5.3 Final Thoughts and Recommendations

Moving forward, several recommendations emerge from this research: Future studies should
continue to explore the public’s evolving perceptions of AI, particularly as AI technology
becomes more integrated into daily life. Longitudinal studies, such as the AIMS Survey,
could provide valuable insights into how these perceptions change over time. Engaging
with the public on the topic of AI sentience and rights is also essential. Public education
campaigns could help demystify AI technologies and address common misconceptions,
potentially leading to more informed public opinions. Policymakers should consider the
diverse range of public opinions identified in this study when developing regulations and
ethical guidelines for AI rights. If future studies reveal that more and more people attribute
sentience to AI, policies that are reflective of public sentiment should be considered. In
conclusion, this research represents a step towards understanding the complex relationship
between AI development and public perception. By identifying and analyzing distinct clusters
of opinion, it provides a clearer picture of the current landscape of beliefs about AI sentience
and rights, offering guidance for future research, public engagement, and policy development.
As we stand on the cusp of potentially transformative advancements in AI, it is imperative
that we continue to explore these issues with the foresight that they demand.
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A.1 Visualization of Participant Demographic Imbalances
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(a) Number of participants who are religious and
non-religious.

(b) Age range of participants. (c) Political alignment of participants.

Fig. A.1 Demographic distributions of survey participants.
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(a) Meat eaters vs. non-meat eaters. (b) Education levels of participants.

(c) Gender distribution of participants. (d) Income distribution of participants.

Fig. A.2 Additional demographic distributions of survey participants.



Appendix B

Methodology Results

B.1 Quantitative Feature Reduction Results

Fig. B.1 t-SNE visualization with 3 components.

Fig. B.2 PCA visualization with 3 components.
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Detailed Qualitative Cluster Evaluation

C.1 Qualitative Feature Mean Heatmap

Fig. C.1 Visualizing the mean of each cluster in the Hierarchical Clustering (City-
block+Complete) Results.

C.2 Hierarchical Clustering Test Results
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Fig. C.2 Visualizing the mean of each cluster in K-Means (UMAP) Clustering Results.
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Fig. C.3 Euclidean and Ward Hierarchical Clustering.
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Fig. C.4 Euclidean and Complete Hierarchical Clustering.
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