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Preliminary results demonstrate that 
developer practices are  undermining 
LLM benchmarks
LLM evaluation results should not be 
taken at face-value
Benchmark developers should keep 
a holdout dataset, decommissioning 
the test once significant Benchmark 
Inflation is measured
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Methods

Can you tell the difference?

Try it out!

Researcher
Input

Preliminary Results
•  Inflation assessment of 20 Open Release and 

 Closed Source models on TruthfulQA
•  Large performance gaps found for OpenAI's 

GPT-4 and Google's Gemma-1.1
•  Evaluation comparison using Retro-TruthfulQA 

 (Misconceptions) reveals undeniable impact of
 evaluation gaming
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Models

The Problem
• Evaluation gaming, e.g. data leakage, is occurring
• Impact on benchmark scores is unknown

The Idea
Holdout• Holdout datasets could resolve this

• Most benchmarks don't have holdouts

• Can we make holdouts retroactively? 

• We'll have to verify indistinguishability
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